I first became interested in vacuum tube models because of my need for good triode and pentode models to use with my Spice circuit simulator to simulate an audio power amplifier I was designing. Searching the internet, I discovered the vacuum tube model work of Norman Koren (Ref (1)). I then began to create some model netlist equations based on Koren's phenomenological triode equations using Texas Instrument's Derive 6 math software. At first, I used trial and error methods to find the parameter values by using Derive to plot the plate characteristic curves of triodes and pentodes and then adjusting the parameter values until they matched five chosen points on the plate curves. Despite the tediousness, I managed to create a fair number of netlists for the tube types that were of interest to me.

I have been using Derive since it's early DOS days. I have found it to be reliable, easy to use and above all, it does everything I need and more. It is also very inexpensive. My Derive 6 copy cost me about 115 dollars. I know all the other math programs are very good, but they are way out of my price range. There is an article on the internet entitled 'Derive 6: Far too good for just students.' I suggest anyone interested in Derive 6 read it. (See Ref (2) for URL).

Because of the tedious work and resulting inaccuracies, I decided I had to find a better way and wondered if I could use Derive 6 to calculate the values of the parameters.

Examining Koren's triode equations, it would seem that the five unknown parameters can only be found using trial and error methods or some sort of program using iterative techniques.

Upon closer examination of Koren's equations, I saw that there are really two separate sets of parameters. The first set of two, kG1 and X, are independent of the second set and are quite easily found using the zero bias line of the triode plate curves. The second set of three, kp, μ and kVB, are more difficult to find, but can be directly calculated using algebraic and numerical programming techniques.

After a number of attempts, I wrote three very simple Derive 6 programs that directly calculate triode, pentode and diode model equation parameters based on Koren's triode equations.

The triode and pentode programs run in 15 to 60 seconds on my computer, depending on tube type and data point selection. Some tube types and data point selections may run on and on without giving a result. You may even get complex numbers for results. In these cases, check your data entry numbers first. If the numbers are ok, then try moving data points B1, B2 and C to higher current levels. I can not promise that these programs will work on any tube type, but I think they will work on most.

THE IMPORTANCE OF KOREN'S TRIODE EQUATIONS

For the vacuum tube audio enthusiast, I do not think the importance of Koren's triode equations can be overestimated. If the five data points are properly selected, these equations represent the simplest and most exact way of mathematically describing the plate characteristics of the triode, and ultimately the pentode.
The most crucial data point is the one I call B1. For low, medium and lower high mu triodes (e.g. 12AT7/12AZ7), it MUST be located on the first negative control grid bias line near cutoff. On very high mu triodes (e.g. 12AX7), it MUST be located on the second negative control grid bias line near cutoff and the "contact potential" Vct must be taken into account.

The selection of the other data points A1, A2, B2 and C are important, but not nearly so much as B1. (For very high mu triodes, A1 and A2 MUST be located on first negative grid bias line).

KOREN'S TRIODE EQUATIONS:

\[n_1 \]
\[V_t = \frac{v_p}{k_1} \cdot \ln \left(1 + \exp \left(k_1 \cdot \frac{1}{\mu} + \frac{v_g_1}{2} \sqrt{k_2 + v_p} \right) \right) \]

Where:

\[v_p \quad \left\{ \begin{array}{c}
1 + \text{SIGN}(v_p) \\
1 + \text{SIGN}(V_t)
\end{array} \right. \]

\[n_1 \quad \left\{ \begin{array}{c}
\frac{1}{2} \cdot n_1 \quad 1 + \text{SIGN}(v_p) \\
\frac{1}{2} \cdot \frac{1}{V_t} \quad 1 + \text{SIGN}(V_t)
\end{array} \right. \]

\[V_t = \sqrt{\left(\frac{v_t}{2} + \frac{V_t}{2} \right) \cdot v_t} \cdot 2 \cdot n_1 - 1 \]

And:

\[V_t = \frac{v_p}{k_1} \cdot \ln \left(1 + \exp \left(k_1 \cdot \frac{1}{\mu} + \frac{v_g_1 + Vct}{2} \sqrt{k_2 + v_p} \right) \right) \]

The following is the step by step procedure I used to create the equations used in the triode, pentode and diode Derive 6 programs.

Because the sign of E1 is not known until after the direct calculation of the coefficients has finished, Koren’s equation (1) has been modified as shown in (3) and (5). Equation (4) suppresses unwanted negative triode responses after the program has run, making the direct calculation of the parameters possible.
INTRODUCING THE PARAMETER P:

Let:

#6: \(\exp\left(\frac{k_1}{\mu}\right) = P \)

Solving (6) for \(k_1 \), substituting for \(k_1 \) in (5) and simplifying:

#7: \[
V_t = v_p \cdot \frac{(v_{g1} + V_{ct}) \cdot \mu / \sqrt{v_p^2 + k_2} + 1}{\mu \cdot \ln(P)}
\]

Substituting for \(V_t \) in (3):

#8: \[
\frac{1}{G_k} = \frac{\ln(P + 1)^{n_1}}{1 + \text{SIGN}(v_p)} \cdot \frac{1}{2}
\]

UPPER ZERO BIAS LINE DATA POINT (\(A_1v_{g1} + V_{ct} = 0 \)):

Substituting constants for variables in (8):

#9: \[
A_{1ik} = \frac{1}{G_k} \cdot \frac{\ln(P + 1)^{n_1}}{1 + \text{SIGN}(A_1v_p)} \cdot \frac{1}{2}
\]

Substituting zero for \(A_1v_{g1} + V_{ct} \) in (9), simplifying and solving for \(G_k \):

#10: \[
G_k = \frac{A_1v_p}{A_{1ik}} \cdot \frac{\ln(P + 1)^{n_1}}{1 + \text{SIGN}(A_1v_p)} \cdot \frac{1}{2}
\]
LOWER ZERO BIAS LINE DATA POINT (A_{2vg1} + Vct = 0):

Assigning a new set of constants for the variables in (8):

\[
\begin{align*}
\#11: \quad A_{2ik} &= \frac{1}{Gk} \left(\frac{(A_{2vg1} + Vct) \cdot \mu / \sqrt{(A_{2vp} + k2) + 1} + 1}{\mu \cdot \ln(P)} \right)^{n1} \cdot \frac{1 + \text{SIGN}(A_{2vp})}{2} \\
&= \frac{1}{Gk} \left(\frac{(A_{2vg1} + Vct) \cdot \mu / \sqrt{(A_{2vp} + k2) + 1} + 1}{\mu \cdot \ln(P)} \right)^{n1} \cdot \frac{1 + \text{SIGN}(A_{2vp})}{2} \\
\end{align*}
\]

Substituting zero for \((A_{2vg1} + Vct)\) in (11), simplifying, substituting for \(Gk\) and solving for \(n1\):

\[
\begin{align*}
\#12: \quad A_{2ik} &= \frac{1}{n1} \left(\frac{(A_{2vp} + k2) + 1}{\ln(P + 1)} \right)^{n1} \cdot \frac{1 + \text{SIGN}(A_{2vp})}{1 + \text{SIGN}(A_{1vp})} \\
&= \frac{1}{n1} \left(\frac{(A_{2vp} + k2) + 1}{\ln(P + 1)} \right)^{n1} \cdot \frac{1 + \text{SIGN}(A_{2vp})}{1 + \text{SIGN}(A_{1vp})} \\
\end{align*}
\]

Solving (12) for \(n1\):

\[
\begin{align*}
\#13: \quad n1 &= \frac{\ln\left(\frac{A_{2ik} \cdot (\text{SIGN}(A_{1vp}) + 1)}{A_{1ik} \cdot (\text{SIGN}(A_{2vp}) + 1)} \right)}{\ln(A_{2vp}) - \ln(A_{1vp})} \\
&= \frac{\ln\left(\frac{A_{2ik} \cdot (\text{SIGN}(A_{1vp}) + 1)}{A_{1ik} \cdot (\text{SIGN}(A_{2vp}) + 1)} \right)}{\ln(A_{2vp}) - \ln(A_{1vp})} \\
\end{align*}
\]

FINDING THE EQUATIONS FOR \(\mu\), \(k2\) and \(P\):

Substituting for \(Gk\) in (8) and simplifying:

\[
\begin{align*}
\#14: \quad i_k &= \frac{1}{n1} \left(\frac{(vg1 + Vct) \cdot \mu / \sqrt{(vp + k2) + 1} + 1}{\ln(P + 1)} \right)^{n1} \cdot \frac{1 + \text{SIGN}(vp)}{2} \\
&= \frac{1}{n1} \left(\frac{(vg1 + Vct) \cdot \mu / \sqrt{(vp + k2) + 1} + 1}{\ln(P + 1)} \right)^{n1} \cdot \frac{1 + \text{SIGN}(vp)}{2} \\
\end{align*}
\]

LOWER LEFT CORNER DATA POINT EQUATION:

Substituting constants for the variables in (14):

\[
\begin{align*}
\#15: \quad B_{1ik} &= \frac{1}{n1} \left(\frac{(B1vg1 + Vct) \cdot \mu / \sqrt{(B1vp + k2) + 1} + 1}{\ln(P + 1)} \right)^{n1} \cdot \frac{1 + \text{SIGN}(B1vp)}{2} \\
&= \frac{1}{n1} \left(\frac{(B1vg1 + Vct) \cdot \mu / \sqrt{(B1vp + k2) + 1} + 1}{\ln(P + 1)} \right)^{n1} \cdot \frac{1 + \text{SIGN}(B1vp)}{2} \\
\end{align*}
\]
LOWER RIGHT CORNER DATA POINT EQUATION:
Substituting a new set of constants for the variables in (14):

\[
#16: \quad B_{2ik} = \frac{A_{1ik}}{A_{1vp}} \left(\frac{\left(B_{2vg2} + V_{ct} \right) \cdot \mu / \sqrt{B_{2vp} + k^2} + 1}{\ln(P + 1)} \right)^{n_1} \cdot \frac{1 + \text{SIGN}(B_{2vp})}{2^n_1}
\]

CENTRAL DATA POINT EQUATION
Substituting another new set of constants for the variables in (14):

\[
#17: \quad C_{ik} = \frac{A_{1ik}}{A_{1vp}} \left(\frac{\left(C_{vg1} + V_{ct} \right) \cdot \mu / \sqrt{C_{vp} + k^2} + 1}{\ln(P + 1)} \right)^{n_1} \cdot \frac{1 + \text{SIGN}(C_{vp})}{2^n_1}
\]

Equations (15), (16) and (17) are used in the triode program to calculate the values of \(\mu\), \(k^2\) and \(P\).

There are 5 data points to be placed on the triode plate characteristics. \(A_1\) and \(A_2\) are placed on the zero control grid bias line (Except for very high \(\mu\) triodes). \(A_1\) is placed near the highest plate current of interest. \(A_2\) should be placed at about half the plate voltage of \(A_1\). \(B_1\) is placed on the first negative grid bias line near cutoff (Except for very high \(\mu\) triodes). \(B_2\) is placed on the most negative grid bias line of interest near cutoff. \(C\) is placed somewhere in the center of the plate characteristics.
TRIODE PARAMETER PROGRAM (12AU7 EXAMPLE)

TRIODE_PARAM(P) :=
 Prog
 Vct := 0
 A1ik := 0.036
 A1vp := 225
 A1vg1 := 0
 A2ik := 0.016
 A2vp := 125
 A2vg1 := 0
 B1ik := 0.0005
 B1vp := 40
 B1vg1 := -2
 #18: B2ik := 0.0005
 B2vp := 420
 B2vg1 := -30
 Cik := 0.0115
 Cvp := 250
 Cvg1 := -8
 n1 := LN(A2ik·(SIGN(A1vp) + 1)/(A1ik·(SIGN(A2vp) + 1)))/(LN(A2vp) - LN(A1vp))
 ASSIGN(μ, SOLVE(B1ik = A1ik/A1vp^n1·(B1vp·(LN(P^((B1vg1 + Vct)·μ/√(B1vp^2 + k2) + 1) + 1)/LN(P + 1)))^n1·((1 + SIGN(B1vp))/2), μ, Real))
 μ := RHS(μ)
 ASSIGN(k2, SOLVE(B2ik = A1ik/A1vp^n1·(B2vp·(LN(P^((B2vg1 + Vct)·μ/√(B2vp^2 + k2) + 1) + 1)/LN(P + 1)))^n1·((1 + SIGN(B2vp))/2), k2, Real))
 k2 := RHS(k2)
 ASSIGN(P, NSOLVE(Cik = A1ik/A1vp^n1·(Cvp·(LN(P^((Cvg1 + Vct)·μ/√(Cvp^2 + k2) + 1) + 1)/LN(P + 1)))^n1·((1 + SIGN(Cvp))/2), P, Real))
 P := RHS(P)
 Gk := A1vp^n1/A1ik·(LN(P + 1)/(μ·LN(P)))^n1·((1 + SIGN(A1vp))/2)
 Vt := vp·(LN(P^((vg1 + Vct)·μ/√(vg1^2 + k2) + 1) + 1)/(μ·LN(P)))
 [Gk := Gk, n1 := n1, μ := μ, k2 := k2, P := P]
Data points A1 and A2 are placed on the first negative grid bias line for very high μ triodes such as the 12AX7. Data point B1 is placed on the second negative grid bias line near cutoff. Data points B2 and C are placed the same as for lower μ triodes.

TRIODE PARAMETER PROGRAM (12AX7 EXAMPLE)

TRIODE_PARAM(P) :=

Prog
[Vct ≔, Vt ≔, Gk ≔, n1 ≔, µ ≔, k2 ≔, P ≔]
[A1ik ≔, A1vp ≔, A1vg1 ≔, A2ik ≔, A2vp ≔, A2vg1 ≔, B1ik ≔, B1vp ≔, B1vg1 ≔]
[B2ik ≔, B2vp ≔, B2vg1 ≔, Cik ≔, Cvp ≔, Cvg1 ≔]

Vct ≔ 0.5
A1ik ≔ 0.00325
A1vp ≔ 200
A1vg1 ≔ -0.5
A2ik ≔ 0.00025
A2vp ≔ 30
A2vg1 ≔ -0.5
B1ik ≔ 0.0001
B1vp ≔ 50
B1vg1 ≔ -1
B2ik ≔ 0.0001
B2vp ≔ 400
B2vg1 ≔ -5
Cik ≔ 0.0012
Cvp ≔ 200
Cvg1 ≔ -1.5

n1 ≔ LN(A2ik·(SIGN(A1vp) + 1)/(A1ik·(SIGN(A2vp) + 1)))/(LN(A2vp) - LN(A1vp))
ASSIGN(n1, SOLVE(B1ik = A1ik/A1vp^n1·(B1vp·(LN(P^((B1vg1 + Vct)·µ/√(B1vp^2 + k2) + 1) + 1)/LN(P + 1)))^n1·((1 + SIGN(B1vp))/2), µ, Real))

µ ≔ RHS(µ)
ASSIGN(k2, SOLVE(B2ik = A1ik/A1vp^n1·(B2vp·(LN(P^((B2vg1 + Vct)·µ/√(B2vp^2 + k2) + 1) + 1)/LN(P + 1)))^n1·((1 + SIGN(B2vp))/2), k2, Real))
k2 ≔ RHS(k2)
ASSIGN(P, NSOLVE(Cik = A1ik/A1vp^n1·(Cvp·(LN(P^((Cvg1 + Vct)·µ/√(Cvp^2 + k2) + 1) + 1)/LN(P + 1)))^n1·((1 + SIGN(Cvp))/2), P, Real))
P ≔ RHS(P)
Gk ≔ A1vp^n1/A1ik·(LN(P + 1)/(µ·LN(P)))^n1·((1 + SIGN(A1vp))/2)
Vt ≔ vp·(LN(P^((vg1 + Vct)·µ/√(vp^2 + k2) + 1) + 1)/(µ·LN(P)))

[Gk = Gk, n1 :: n1, µ = µ, k2 :: k2, P = P]
The pentode triode connection equations are the same as for the triode except for the substitution of \(vg_2 \) for \(vp \) in (22):

PENTODE CONNECTION EQUATION DEVELOPMENT

PENTODE CATHODE CURRENT

\[
\text{ik} = \frac{1}{G_k} \cdot V_p \cdot \frac{1 + \text{SIGN}(V_p)}{2}
\]

Where:

\[
V_p = \sqrt{\left(\frac{V_p}{2} + \frac{V_p}{2}\right) \cdot V_p - 1}
\]

Substituting for \(V_p^{n_1} \) in (20):

\[
\text{ik} = \frac{1}{G_k} \cdot \sqrt{\left(\frac{V_p}{2} + \frac{V_p}{2}\right) \cdot V_p - 1} \cdot \frac{1 + \text{SIGN}(V_p)}{2}
\]

And:

Substituting \(V_p \) for \(V_t \), and \(vg_2 \) for \(vp \) in (7):

\[
\ln\left[\frac{(vg_1 + V_{ct}) \cdot \mu/\sqrt{vg_2^2 + k2} + 1}{\mu \cdot \ln(P)}\right]
\]

PENTODE PLATE CURRENT

The pentode "knee" equation is shown in (24):

\[
\text{ip} = \frac{a + V_p}{\left(\frac{vg_2}{V_p}\right)^{n_2} + b + V_p} \cdot \text{ik}
\]
Substituting for ik in (24):

$$i_p = \frac{a + v_p}{(v_{g2}/v_p)^{n_2} + b + v_p} \cdot \frac{1}{G_k} \cdot \frac{1 + \text{SIGN}(v_p)}{2}$$

Substituting for v_p and G_k in (25) and simplifying:

$$i_p = \frac{a + v_p}{(v_{g2}/v_p)^{n_2} + b + v_p} \cdot \frac{A_{1ik}}{A_{1vp}} \cdot \frac{\left((v_{g1} + V_{ct}) \cdot \mu / \sqrt{(v_{g2}^2 + k_2)} + 1\right)^{n_1}}{\ln(P + 1)} \cdot \frac{1 + \text{SIGN}(v_p)}{2}$$

FINDING THE EQUATIONS FOR $D_{1}ip$, a, b and n_2:

D1 DATA POINT EQUATION ($D_{1}vp \to \infty$ and ($D_{1}v_{g1} + V_{ct}) = 0$):

Substituting constants for the variables in (26):

$$D_{1}ip = \frac{a + D_{1}v_p}{(D_{vg2}/D_{1}v_p)^{n_2} + b + D_{1}v_p} \cdot \frac{A_{1ik}}{A_{1vp}} \cdot \frac{\left((D_{vg1} + V_{ct}) \cdot \mu / \sqrt{(D_{vg2}^2 + k_2)} + 1\right)^{n_1}}{\ln(P + 1)} \cdot \frac{1 + \text{SIGN}(D_{1}v_p)}{2}$$

Letting $D_{1}v_p$ approach infinity and substituting for $D_{1}v_{g1}$, simplifying and solving (27) for $D_{1}ip$:

$$D_{1}ip = \frac{A_{1ik}}{A_{1vp}} \cdot \frac{n_1}{n_2} \cdot \frac{1 + \text{SIGN}(D_{1}v_p)}{2}$$
D2 DATA POINT EQUATION (D2vp = Dvg2 and (D2vg1 + Vct) = 0):
Substituting a new set of constants for the variables in (26):

#29: \[D2ip = \frac{a + D2vp}{1 + b + D2vp} \cdot \frac{A1ik \cdot \left(\frac{(D2vg1 + Vct) \cdot \mu / \sqrt{(Dvg2 + k2)} + 1}{Dvg2 \cdot \ln(P + 1)} + 1 \right)^{n1} \cdot 1 + \text{SIGN}(D2vp)}{A1ik \cdot \frac{Dvg2}{D2vp} + b + D2vp} \]

Substituting for D2vp in (29) and substituting for zero and simplifying:

#30: \[D2ip = \frac{a + D2vp}{1 + b + D2vp} \cdot \frac{A1ik \cdot \frac{Dvg2}{D2vp} + b + D2vp}{A1vp} \]

D3 DATA POINT EQUATION (knee; (D3vg1 + Vct) = 0)
Substituting another new set of constants for the variables in (26):

#31: \[D3ip = \frac{a + D3vp}{1 + b + D3vp} \cdot \frac{A1ik \cdot \left(\frac{(D3vg1 + Vct) \cdot \mu / \sqrt{(Dvg2 + k2)} + 1}{Dvg2 \cdot \ln(P + 1)} + 1 \right)^{n1} \cdot 1 + \text{SIGN}(D3vp)}{A1ik \cdot \frac{Dvg2}{D3vp} + b + D3vp} \]

Substituting for D3vp and substituting for zero in (31) and simplifying:

#32: \[D3ip = \frac{a + D3vp}{1 + b + D3vp} \cdot \frac{A1ik \cdot \frac{Dvg2}{D3vp} + b + D3vp}{A1vp} \]

D4 DATA POINT EQUATION (below knee; \((D4vg1 + Vct) = 0\))

Again, substituting a new set of constants for the variables in (26):

\[
#33: D4ip = \frac{a + D4vp}{\left(\frac{Dvg2}{D4vp}\right)^{n2} + b + D4vp} \cdot \frac{A1ik}{A1vp} \cdot \left[\left(\frac{D4vg1 + Vct}{Dvg2} \cdot \mu/\sqrt{Dvg2 + k2} + 1\right)^n1 \cdot \ln\left(P + 1\right)\right]^{n1} \cdot 1 + \text{SIGN}(D4vp)
\]

Substituting zero for \(D4vg1\) in (33) and simplifying:

\[
#34: D4ip = \frac{a + D4vp}{\left(\frac{Dvg2}{D4vp}\right)^{n1} + b + D4vp} \cdot \frac{A1ik}{A1vp} \cdot \ln\left(P + 1\right) \cdot 2
\]

Equations (28), (30), (32) and (34) are used in the pentode program to calculate the values of \(D1ip\), \(a\), \(b\) and \(n2\).

Data points \(A1\), \(A2\), \(B1\), \(B2\) and \(C\) are placed on the pentode triode connection plate characteristics in the same manner as for lower \(\mu\) triodes. Data points \(D2\), \(D3\) and \(D4\) are placed on the pentode connection zero bias line. \(D2\) is placed at the plate voltage that is equal to the chosen screen grid voltage. \(D3\) is placed on the "knee" of the curve and \(D4\) is placed at about half the knee current.
PENTODE PARAMETER PROGRAM (6550 EXAMPLE):

PENTODE_PARAM(P) :=

Prod

Vct := 0

A1ik := 0.502
A1vp := 300
A2ik := 0.176
A2vp := 150
B1ik := 0.005
B1vp := 80
B1vg1 := -10
B2ik := 0.035
B2vp := 520
B2vg1 := -70
Cik := 0.065
Cvp := 300
Cvg1 := -30
Dvg2 := 300
D1vp := ∞
D2ip := 0.455
D2vp := 300
D3ip := 0.425
D3vp := 80
D4ip := 0.15
D4vp := 20
n1 := LN(A2ik·(SIGN(A1vp) + 1)/(A1ik·(SIGN(A2vp) + 1)))/(LN(A2vp) - LN(A1vp))

ASSIGN(μ, SOLVE(B1ik = A1ik/A1vp^n1·(B1vp·(LN(P^(B1vg1·μ/√(B1vp^2 + k2) + 1) + 1)/LN(P + 1)))^n1·((1 + SIGN(B1vp))/2), μ, Real))

μ := RHS(μ)

ASSIGN(k2, SOLVE(B2ik = A1ik/A1vp^n1·(B2vp·(LN(P^(B2vg1·μ/√(B2vp^2 + k2) + 1) + 1)/LN(P + 1)))^n1·((1 + SIGN(B2vp))/2), k2, Real))

k2 := RHS(k2)

ASSIGN(P, NSOLVE(Cik = A1ik/A1vp^n1·(Cvp·(LN(P^(Cvg1·μ/√(Cvp^2 + k2) + 1) + 1)/LN(P + 1)))^n1·((1 + SIGN(Cvp))/2), P, Real))

P := RHS(P)

Gk := A1vp^n1/A1ik·(LN(P + 1)/(μ·LN(P)))^n1·((1 + SIGN(A1vp))/2)

ASSIGN(a, SOLVE(D2ip = (a + Dvg2)/(1 + b + Dvg2)·(A1ik/A1vp^n1)·Dvg2^n1·(1 + SIGN(D2vp))/2, a, Real))

a := RHS(a)

ASSIGN(b, SOLVE(D3ip = (a + D3vp)/(Dvg2/D3vp)^n2 + b + D3vp)·(A1ik/A1vp^n1)·Dvg2^n1·(1 + SIGN(D3vp))/2, b, Real))

b := RHS(b)

ASSIGN(n2, NSOLVE(D4ip = (a + D4vp)/(Dvg2/D4vp)^n2 + b + D4vp)·(A1ik/A1vp^n1)·Dvg2^n1·(1 + SIGN(D4vp))/2, n2, Real))

n2 := RHS(n2)

Vt := vp·(LN(P^(vg1·μ/√(vg2^2 + k2) + 1) + 1)/(μ·LN(P)))

Vp := vg2·(LN(P^(vg1·μ/√(vg2^2 + k2) + 1) + 1)/(μ·LN(P)))

D1ip := A1ik/A1vp^n1·Dvg2^n1·(1 + SIGN(D1vp))/2

[Gk := Gk, n1 := n1, μ := μ, k2 := k2, P := P, a := a, b := b, n2 := n2, D1ip := D1ip]
TRIODE EQUATIONS

\[i_k = \frac{1}{G_k} \cdot \sqrt{\left(\frac{V_t}{2} + \frac{V_t}{2} \cdot V_t^{2 \cdot n_1 - 1} \right) \cdot \frac{1 + \text{SIGN}(v_p)}{2}} \]

Where:

\[V_t = v_p \cdot \frac{\ln(P)}{\mu} \]

PENTODE TRIODE CONNECTION EQUATIONS

\[i_k = \frac{1}{G_k} \cdot \sqrt{\left(\frac{V_t}{2} + \frac{V_t}{2} \cdot V_t^{2 \cdot n_1 - 1} \right) \cdot \frac{1 + \text{SIGN}(v_p)}{2}} \]

Where:

\[V_t = v_p \cdot \frac{\ln(P)}{\mu} \]

PENTODE CONNECTION EQUATIONS

The signum function has been placed in the plate and screen current equations to suppress unwanted negative current responses when and if \(v_p \) goes negative.

PLATE CURRENT

\[i_p = \frac{a + v_p}{G_k} \cdot \frac{1}{2} \cdot \sqrt{\left(\frac{V_p}{2} + \frac{V_p}{2} \cdot V_p^{2 \cdot n_1 - 1} \right) \cdot \frac{1 + \text{SIGN}(v_p)}{2}} \]

SCREEN GRID CURRENT

I have assumed that \(i_k \) is constant as \(v_p \) varies. This is only approximately true, but for the purpose of estimating \(i_g2 \), it will do.

\[i_{g2} = i_k - i_p \]

Substituting for \(i_p \) in (40) and factoring out \(i_k \):
\[ig_2 = 1 - \frac{a + vp}{\left(\frac{vg_2}{vp}\right)^n_2 + b + vp} \cdot ik \]

Substituting for \(ik \) in (41), and then substituting for \(Vp^n_1 \):

\[ig_2 = \left(1 - \frac{a + vp}{\left(\frac{vg_2}{vp}\right)^n_2 + b + vp}\right) \cdot \frac{1}{G_k} \cdot \sqrt{\left(\frac{Vp}{2}\right) + \left(\frac{Vp}{2}\right) \cdot Vp^{2 \cdot n_1 - 1}} \cdot \frac{1 + \text{SIGN}(vp)}{2} \]

Where:

\[Vp = \frac{\left((vg_1 + Vct) \cdot \mu / \sqrt{vg_2 + k_2} + 1\right)}{\mu \cdot \ln(P)} \]

Note: To display the pentode connection plate characteristics in a Derive 6 2D window, the value you are using for \(vg_2 \) must be entered in (44). Otherwise, leave (44) blank.

DIODE PROGRAM

For the diode program, data point A1 is placed at the highest current of interest on the diode plate characteristic. Data point A2 is placed at about half the plate voltage of A1.

DIODE PARAMETER PROGRAM (5AR4 EXAMPLE):

```
DIODE_PARAM(vp) :=
Prog
A1ik := 0.86
A1vp := 42
A2ik := 0.29
A2vp := 20
n1 := LN(A2ik/A1ik)/(LN(A2vp) - LN(A1vp))
Vd := vp
  [n1 := n1, Alik := A1ik, A1vp := A1vp]
```
DIODE EQUATIONS:

\[i_k = \frac{A_{1ik}}{n_1} \cdot \frac{n_1 \cdot 1 + \text{SIGN}(v_p)}{V_d \cdot 2} \]

Where:

\[V_d = \sqrt{\left(\left(\frac{V_d}{2}\right) + \frac{V_d}{2}\right) \cdot V_d \cdot 2 \cdot n_1 - 1} \]

Substituting for \(V_d^n_1 \) in (46):

\[i_k = \frac{A_{1ik}}{n_1} \cdot \sqrt{\left(\left(\frac{V_d}{2}\right) + \frac{V_d}{2}\right) \cdot V_d \cdot 2 \cdot n_1 - 1} \cdot \frac{1 + \text{SIGN}(v_p)}{2} \]

And:

\[V_d = v_p \]

RESET PROGRAM

The reset program is used to clear all variables before making changes to the equations or programs.

\[\text{RESET}(v_{g1}, v_{g2}, v_p) : \]

\[\text{Prog} \]

Ref (1) http://www.normankoren.com/Audio/Tubemodspice_article.html

Ref (2) http://www.scientific-computing.com/scwmarapr04derive6.html

Ref (3) http://www.knology.net/~billelliott

Bill Elliott email: williamy@knology.net